摘要/Abstract

摘要: 氮化镓(GaN)高电子迁移率晶体管(high electron mobility transistor, HEMT)以其击穿场强高、导通电阻低、转换效率高等特点引起科研人员的广泛关注并有望应用于电力电子系统中,但其高功率密度和高频特性给封装技术带来极大挑战。传统硅基电力电子器件封装中寄生电感参数较大,会引起开关振荡等问题,使GaN的优良性能难以充分发挥;另外,封装的热管理能力决定了功率器件的可靠性,若不能很好地解决器件的自热效应,会导致其性能降低,甚至芯片烧毁。本文在阐释传统封装技术应用于氮化镓功率电子器件时产生的开关震荡和热管理问题基础上,详细综述了针对以上问题进行的GaN封装技术研究进展,包括通过优化控制电路、减小电感Lg、提高电阻Rg抑制dv/dt、在栅电极上加入铁氧体磁环、优化PCB布局、提高磁通抵消量等方法解决寄生电感导致的开关振荡、高导热材料金刚石在器件热管理中的应用、器件封装结构改进,以及其他散热技术等。

关键词:

氮化镓,

功率电子器件,

封装技术,

高电子迁移率晶体管,

开关振荡,

散热,

金刚石

Abstract: Gallium nitride (GaN) high electron mobility transistor (HEMT) has attracted much attention due to its high breakdown field strength, low on-resistance and high conversion efficiency, and it is expected to be applied in power electronics systems. However, its high power density and high frequency characteristics bring great challenges to packaging technology. The parasitic inductance parameters in the package of traditional silicon power electronic devices is large, which will cause switch oscillation and other problems, so that the excellent performance of GaN cannot be fully utilized. In addition, the thermal management ability of the package determines the reliability of the power device. If the self-heating effect of the device cannot be well solved, its performance will be reduced, and even the chip will be burned. On the basis of explaining the switching oscillation and thermal management problems caused by traditional packaging technology applied to gallium nitride power electronic devices, the research progress of GaN packaging technology aiming at the above problems are reviewed in detail in this paper, including by optimizing the control circuit, reducing Lg inductancing, improving Rg inhibition of dv/dt, increasing ferrite beads on the gate electrode, PCB layout optimization and increasing magnetic flux offset method to solve the problem of switch oscillation caused by the parasitic inductance, the application of high thermal conductivity material of diamond in devices thermal management, improvement of device package structure and other heat dissipation technologies.

Key words:

gallium nitride,

power electronic device,

packaging technology,

high electron mobility transistor,

switch oscillation,

heat dissipation,

diamond

中图分类号:

TN303

引用本文

冯家驹, 范亚明, 房丹, 邓旭光, 于国浩, 魏志鹏, 张宝顺. 氮化镓功率电子器件封装技术研究进展[J]. 人工晶体学报, 2022, 51(4): 730-749.

FENG Jiaju, FAN Yaming, FANG Dan, DENG Xuguang, YU Guohao, WEI Zhipeng, ZHANG Baoshun. Research Progress of Gallium Nitride Power Electronic Device Packaging Technology[J]. Journal of Synthetic Crystals, 2022, 51(4): 730-749.

使用本文

/

推荐

导出引用管理器 EndNote|Ris|BibTeX

链接本文:

http://rgjtxb.jtxb.cn/CN/

http://rgjtxb.jtxb.cn/CN/Y2022/V51/I4/730

参考文献

[1] CHEN J, DU X, LUO Q M, et al. A review of switching oscillations of wide bandgap semiconductor devices[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 13182-13199.[2] BROTHERS J A, BEECHNER T. GaN module design recommendations based on the analysis of a commercial 3-phase GaN module[C]//2019 IEEE Energy Conversion Congress and Exposition. September 29 - October 3, 2019, Baltimore, MD, USA. IEEE, 2019: 4109-4116.[3] YU Z C, ZELTNER S, BOETTCHER N, et al. Heterogeneous integration of vertical GaN power transistor on Si capacitor for DC-DC converters[C]//2018 7th Electronic System-Integration Technology Conference (ESTC). September 18-21, 2018, Dresden, Germany. IEEE, 2018: 1-5.[4] LEE F C, ZHANG W L, HUANG X C, et al. A new package of high-voltage cascode gallium nitride device for high-frequency applications[C]//2015 IEEE International Workshop on Integrated Power Packaging. May 3-6, 2015, Chicago, IL, USA. IEEE, 2015: 9-15.[5] CHEN J, XIE Y, TROMBLEY D, et al. System co-design of a 600V GaN FET power stage with integrated driver in a QFN system-in-package (QFN-SiP)[C]//2019 IEEE 69th Electronic Components and Technology Conference. May 28-31, 2019, Las Vegas, NV, USA. IEEE, 2019: 1221-1226.[6] 郝 跃,张金风,张进成.氮化物宽禁带半导体材料与电子器件[M].北京:科学出版社,2013:225-227.HAO Y, ZHANG J F, ZHANG J C. Nitride wide band gap semiconductor materials and electronic devices[M]. Beijing: Science Press, 2013:225-227(in Chinese).[7] EGAWA T, ZHAO G Y, ISHIKAWA H, et al. Characterizations of recessed gate AlGaN/GaN HEMTs on sapphire[J]. IEEE Transactions on Electron Devices, 2001, 48(3): 603-608.[8] 陈堂胜,孔月婵,吴立枢.金刚石衬底GaN HEMT研究进展[J].固体电子学研究与进展,2016,36(5):360-364.CHEN T S, KONG Y C, WU L S. The research progress of GaN-on-diamond HEMTs[J]. Research & Progress of SSE, 2016, 36(5): 360-364(in Chinese).[9] LETELLIER A, DUBOIS M R, TROVO J P F, et al. Calculation of printed circuit board power-loop stray inductance in GaN or high di/dt applications[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 612-623.[10] MATSUURA K, YANAGI H, TOMIOKA S, et al. Power-density development of a 5MHz-switching DC-DC converter[C]//2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition. February 5-9, 2012, Orlando, FL, USA. IEEE, 2012: 2326-2332.[11] JI S, REUSCH D, LEE F C. High-frequency high power density 3-D integrated gallium-nitride-based point of load module design[J]. IEEE Transactions on Power Electronics, 2012, 28(9): 4216-4226.[12] WANG K P, YANG X, WANG L L, et al. Instability analysis and oscillation suppression of enhancement-mode GaN devices in half-bridge circuits[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 1585-1596.[13] LIU Z Y, HUANG X C, ZHANG W L, et al. Evaluation of high-voltage cascode GaN HEMT in different packages[C]//2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014. March 16-20, 2014, Fort Worth, TX, USA. IEEE, 2014: 168-173.[14] WANG Z, HONEA J, SHI Y X, et al. Investigation of driver circuits for GaN HEMTs in leaded packages[C]//2014 IEEE Workshop on Wide Bandgap Power Devices and Applications. October 13-15, 2014, Knoxville, TN, USA. IEEE, 2014: 81-87.[15] REUSCH D, STRYDOM J. Understanding the effect of PCB layout on circuit performance in a high-frequency gallium-nitride-based point of load converter[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 2008-2015.[16] WANG K P, WANG L L, YANG X, et al. A multiloop method for minimization of parasitic inductance in GaN-based high-frequency DC-DC converter[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4728-4740.[17] SUN B N, ZHANG Z, ANDERSEN M A E. Research of low inductance loop design in GaN HEMT application[C]//IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society. October 21-23, 2018, Washington, DC, USA. IEEE, 2018: 1466-1470.[18] SUN B N, JØRGENSEN K L, ZHANG Z, et al. Multi-physic analysis for GaN transistor PCB layout[C]//2019 IEEE Applied Power Electronics Conference and Exposition. March 17-21, 2019, Anaheim, CA, USA. IEEE, 2019: 3407-3413.[19] ABDULLAH Y, LI H, WANG J. Evaluation of 600 V direct-drive GaN HEMT and a comparison to GaN GIT[C]//2017 IEEE 5th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). October 30-November 1, 2017, Albuquerque, NM, USA. IEEE, 2017: 273-276.[20] NEXPERIA. Circuit design and PCB layout recommendations for GaN FET half bridges[EB/OL]. (2019-02-13)[2022-02-25]. https://assets.nexperia.com/documents/application-note/AN90006.pdf[21] GaN Systems. PCB Layout Considerations with GaN E-HEMTs[EB/OL]. (2021-07-20)[2022-02-25]. https://gansystems.com/wp-content/uploads/2021/07/GN009-PCB-Layout-Considerations-with-GaN-E-HEMTs_20210720.pdf[22] YANG S S, SOH J H, KIM R Y. Parasitic inductance reduction design method of vertical lattice loop structure for stable driving of GaN HEMT[C]//2019 IEEE 4th International Future Energy Electronics Conference. November 25-28, 2019, Singapore. IEEE, 2019: 1-8.[23] CHANDER S, SINGH P, GUPTA S, et al. Self heating effects in GaN high electron mobility transistor for different passivation material[J]. Defence Science Journal, 2020, 70(5): 511-514.[24] HARRIS T R, DAVIS W R, LIPA S, et al. Vertical stack thermal characterization of heterogeneous integration and packages[C]//2019 International 3D Systems Integration Conference (3DIC). October 8-10, 2019, Sendai, Japan. IEEE, 2019: 1-3.[25] FRANCIS D, WASSERBAUER J, FAILI F. GaN-HEMT epilayers on diamond substrates: recent progress[J]. In Proc: CS MANTECH, Austin, TX 133, 2007: 133-136.[26] CHU K K, YUROVCHAK T, CHAO P C, et al. Thermal modeling of high power GaN-on-diamond HEMTs fabricated by low-temperature device transfer process[C]//2013 IEEE Compound Semiconductor Integrated Circuit Symposium. October 13-16, 2013, Monterey, CA, USA. IEEE, 2013: 1-4.[27] 杨士奇,任泽阳,张金风,等.硅基氮化镓异质结材料与多晶金刚石集成生长研究[J].固体电子学研究与进展,2021,41(1):18-23.YANG S Q, REN Z Y, ZHANG J F, et al. Research on growth of poly-crystalline diamond on Si-based GaN heterojunction material[J]. Research & Progress of SSE, 2021, 41(1): 18-23(in Chinese).[28] CHU K K, CHAO P C, DIAZ J A, et al. S2-T4: low-temperature substrate bonding technology for high power GaN-on-diamond HEMTs[C]//2014 Lester Eastman Conference on High Performance Devices (LEC). August 5-7, 2014, Ithaca, NY, USA. IEEE, 2014: 1-4.[29] CHAO P C, CHU K, CREAMER C, et al. Low-temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz[J]. IEEE Transactions on Electron Devices, 2015, 62(11): 3658-3664.[30] LIU T T, KONG Y C, WU L S, et al. 3-inch GaN-on-diamond HEMTs with device-first transfer technology[J]. IEEE Electron Device Letters, 2017, 38(10): 1417-1420.[31] GERRER T, CIMALLA V, WALTEREIT P, et al. Transfer of AlGaN/GaN RF-devices onto diamond substrates via van der Waals bonding[J]. 2017 12th European Microwave Integrated Circuits Conference (EuMIC), 2017: 25-28.[32] MU F W, HE R, SUGA T. Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices[J]. Scripta Materialia, 2018, 150: 148-151.[33] MOTALA M J, BLANTON E W, HILTON A, et al. Transferrable AlGaN/GaN high-electron mobility transistors to arbitrary substrates via a two-dimensional boron nitride release layer[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21837-21844.[34] ZHANG Y, XING Y H, HAN J, et al. Improving AlN crystalline quality by high-temperature ammonia-free microwave plasma chemical vapor deposition[J]. Applied Physics Express, 2021, 14(5): 055503.[35] 田寒梅,刘金龙,陈良贤,等.微波等离子体下GaN的分解与纳米金刚石膜的沉积[J].人工晶体学报,2015,44(1):7-12.TIAN H M, LIU J L, CHEN L X, et al. Decomposition of GaN and direct deposition of nano-diamond film in microwave plasma[J]. Journal of Synthetic Crystals, 2015, 44(1): 7-12(in Chinese).[36] TIWARI R N, CHANG L. Etching of GaN by microwave plasma of hydrogen[J]. Semiconductor Science and Technology, 2010, 25(3): 035010.[37] MCCAULEY T G, GRUEN D M, KRAUSS A R. Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma[J]. Applied Physics Letters, 1998, 73(12): 1646-1648.[38] PETHERBRIDGE J R, MAY P W, PEARCE S R J, et al. Low temperature diamond growth using CO2/CH4 plasmas: molecular beam mass spectrometry and computer simulation investigations[J]. Journal of Applied Physics, 2000, 89(2): 1484-1492.[39] MAY P W, TSAI H Y, WANG W N, et al. Deposition of CVD diamond onto GaN[J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 526-530.[40] YAMADA H, CHAYAHARA A, MOKUNO Y. Effects of intentionally introduced nitrogen and substrate temperature on growth of diamond bulk single crystals[J]. Japanese Journal of Applied Physics, 2016, 55(1S): 01AC07.[41] 付方彬,金 鹏,刘雅丽,等.MPCVD生长半导体金刚石材料的研究现状[J].微纳电子技术,2016,53(9):571-581+587.FU F B, JIN P, LIU Y L, et al. Research status of the semiconductor diamond materials grown by the MPCVD[J]. Micronanoelectronic Technology, 2016, 53(9): 571-581+587(in Chinese).[42] 林 晨,李义锋,张锦文.微波等离子体化学气相沉积方法制备纳米金刚石薄膜[J].功能材料,2021,52(7):7001-7005+7011.LIN C, LI Y F, ZHANG J W. Nanocrystalline diamond film growth by microwave plasma enhanced chemical vapor deposition (MPCVD)[J]. Journal of Functional Materials, 2021, 52(7): 7001-7005+7011(in Chinese).[43] YATES L, ANDERSON J, GU X, et al. Low thermal boundary resistance interfaces for GaN-on-diamond devices[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 24302-24309.[44] SUN H R, SIMON R B, POMEROY J W, et al. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications[J]. Applied Physics Letters, 2015, 106(11): 111906.[45] POMEROY J W, BERNARDONI M, DUMKA D C, et al. Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping[J]. Applied Physics Letters, 2014, 104(8): 083513.[46] CHO J, WON Y, FRANCIS D, et al. Thermal interface resistance measurements for GaN-on-diamond composite substrates[C]//2014 IEEE Compound Semiconductor Integrated Circuit Symposium. October 19-22, 2014, La Jolla, CA, USA. IEEE, 2014: 1-4.[47] ZHENG X F, WANG A C, HOU X H, et al. Influence of the diamond layer on the electrical characteristics of AlGaN/GaN high-electron-mobility transistors[J]. Chinese Physics Letters, 2017, 34(2): 027301.[48] ANDERSON T J, HOBART K D, TADJER M J, et al. Nanocrystalline diamond for near junction heat spreading in GaN power HEMTs[J]. 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2013: 1-4.[49] ZHANG H, GUO Z X, LU Y F. Enhancement of hot spot cooling by capped diamond layer deposition for multifinger AlGaN/GaN HEMTs[J]. IEEE Transactions on Electron Devices, 2020, 67(1): 47-52.[50] ZHU T, ZHENG X F, CAO Y R, et al. Study on the effect of diamond layer on the performance of double-channel AlGaN/GaN HEMTs[J]. Semiconductor Science and Technology, 2020, 35(5): 055006.[51] Fujitsu Limited, Fujitsu Laboratories Limited. Fujitsu successfully grows diamond film to boost heat dissipation efficiency of GaN HEMT[DB/OL]. (2019-12-05) [2021-11-14]. https://www.fujitsu.com/global/about/resources/news/press-releases/2019/1205-01.html[52] 鲍 婕,周德金,陈珍海,等.GaN HEMT器件封装技术研究进展[J].电子与封装,2021,21(2):7-18+5.BAO J, ZHOU D J, CHEN Z H, et al. Research progress of GaN HEMT package technology[J]. Electronics & Packaging, 2021, 21(2): 7-18+5(in Chinese).[53] FÄRCAŞ C, CIOCAN I, PETREUŞ D, et al. Thermal modeling and analysis of a power device heat sinks[C]//2012 IEEE 18th International Symposium for Design and Technology in Electronic Packaging. October 25-28, 2012, Alba Iulia, Romania. IEEE, 2012: 217-222.[54] HSU L H, LAI Y Y, TU P T, et al. Development of GaN HEMTs fabricated on silicon, silicon-on-insulator, and engineered substrates and the heterogeneous integration[J]. Micromachines, 2021, 12(10): 1159.[55] 氮化镓科技汇:QST衬底为实现非常厚的GaN缓冲层提供路径[EB/OL].(2018-05-03)[2022-02-06]. http://www.ganhemt.com/jish/78.html.Gallium nitride Technology Convergence: QST substrates provide a path to achieve very thick GaN buffers[EB/OL].(2018-05-03)[2022-02-06]. http://www.ganhemt.com/jish/78.html.[56] Semiconductor TODAY: Imec and Qromis present p-GaN HEMTs on 200 mm CTE-matched substrates. [EB/OL](2018-04-06)[2022-02-06]. http://www.semiconductor-today.com/news_items/2018/apr/imec-qromis_060418.shtml[57] GEENS K, LI X D, ZHAO M, et al. 650 V p-GaN gate power HEMTs on 200 mm engineered substrates[C]//2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). October 29-31, 2019, Raleigh, NC, USA. IEEE, 2019: 292-296.[58] YAN Z, LIU G, KHAN J M, et al. Graphene quilts for thermal management of high-power GaN transistors[J]. Nature Communications, 2012, 3: 827.[59] LI L, FUKUI A, WAKEJIMA A. Bonding GaN on high thermal conductivity graphite composite with adequate interfacial thermal conductance for high power electronics applications[J]. Applied Physics Letters, 2020, 116(14): 142105.[60] MOHANTY S K, CHEN Y Y, YEH P H, et al. Thermal management of GaN-on-Si high electron mobility transistor by copper filled micro-trench structure[J]. Scientific Report, 2019, 9: 19691.[61] ZHAO M L, TANG X S, HUO W X, et al. Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate[J]. Chinese Physics B, 2020, 29(4): 584-587.[62] WANG W J, CHEN J, LUNDH J S, et al. Modulation of the two-dimensional electron gas channel in flexible AlGaN/GaN high-electron-mobility transistors by mechanical bending[J]. Applied Physics Letters, 2020, 116(12): 123501.[63] ZHANG W L, YANG F, et al. Thermal design and performance of top-side cooled QFN 12×12 package for automotive 650-V GaN power stage[EB/OL]. (2021-03-10)[2022-02-25]. https://www.ti.com/lit/an/snoaa70/snoaa70.pdf?ts=1645757400545&ref_url=https%253A%252F%252Fcn.bing.com%252F.[64] CHENG S, CHOU P C. Novel packaging design for high-power GaN-on-Si high electron mobility transistors (HEMTs)[J]. International Journal of Thermal Sciences, 2013, 66: 63-70.[65] LU S C, ZHAO T Y, BURGOS R, et al. Packaging of (650 V, 150 A) GaN HEMT with low parasitics and high thermal performance[C]//2021 International Conference on Electronics Packaging (ICEP). May 12-14, 2021. Tokyo, Japan. IEEE, 2021.[66] LI B Y, YANG X, WANG K P, et al. A compact double-sided cooling 650V/30A GaN power module with low parasitic parameters[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 426-439.[67] LI X, CHEN G, CHEN X, et al. High temperature ratcheting behavior of nano-silver paste sintered lap shear joint under cyclic shear force[J]. Microelectronics Reliability, 2013, 53(1): 174-181.[68] YU C Y, YANG D S, ZHAO D L, et al. Reliability of nano-silver soldering paste with high thermal conductivity[C]//2019 20th International Conference on Electronic Packaging Technology(ICEPT). August 12-15, 2019, Hong Kong, China. IEEE, 2019: 1-4.[69] HERAEUS. Low temperature non-pressure dispensing sinter paste for power electronic applications[EB/OL]. (2020-03-13)[2022-02-25]. https://www.heraeus.com/en/het/products_and_solutions_het/sinter_materials/magic_da295a/magic_da295a.html?_ga=2.237279241.883563861.1645757880-91757731.1636944859.

相关文章 15

[1]

许万里, 甘云海, 李悦文, 李彬, 郑有炓, 张荣, 修向前. 高均匀性6英寸GaN厚膜的高速率HVPE生长研究[J]. 人工晶体学报, 2025, 54(1): 11-16.

[2]

兰飞飞, 刘莎莎, 房诗舒, 王英民, 程红娟. 金刚石基GaN界面热阻控制研究进展[J]. 人工晶体学报, 2024, 53(6): 913-921.

[3]

肖宏宇, 李勇, 田昌海, 张蔚曦, 王强, 肖政国, 王应, 金慧, 鲍志刚, 周振翔. Ib型金刚石单晶生长及合成腔体温度场分布研究[J]. 人工晶体学报, 2024, 53(6): 959-966.

[4]

夏政辉, 李腾坤, 任国强, 解凯贺, 卢文浩, 李韶哲, 郑树楠, 高晓冬, 徐科. 氨热法GaN单晶生长的位错密度演变研究[J]. 人工晶体学报, 2024, 53(3): 480-486.

[5]

张雅淋, 安晓明, 葛新岗, 姜龙, 李义锋. 大尺寸金刚石激光闪射法热导率测试研究[J]. 人工晶体学报, 2024, 53(3): 503-510.

[6]

郝敬林, 邓丽芬, 王凯悦, 宋惠, 江南, 西村一仁. 高温高压合成掺杂金刚石研究进展[J]. 人工晶体学报, 2024, 53(2): 194-209.

[7]

罗晓航, 许光宇, 李利军, 张永康, 张亚琛, 吴海平, 安康. 自支撑金刚石厚膜三方向三点弯曲断裂韧性对比研究[J]. 人工晶体学报, 2024, 53(12): 2085-2093.

[8]

刘帅伟, 关春龙, 鲁云祥, 易剑, 江南, 西村一仁. 金刚石在富氧环境下的高效抛光及其材料去除机制研究[J]. 人工晶体学报, 2024, 53(12): 2094-2103.

[9]

安康, 许光宇, 吴海平, 张亚琛, 张永康, 李利军, 李鸿, 张旭芳, 刘峰斌, 李成明. 金刚石化学机械抛光研究进展[J]. 人工晶体学报, 2024, 53(10): 1675-1687.

[10]

李宗平, 程大猛. 金刚石线锯锯切β-Ga2O3晶体应力场分析[J]. 人工晶体学报, 2023, 52(8): 1378-1385.

[11]

陈根强, 赵浠翔, 于众成, 李政, 魏强, 林芳, 王宏兴. 异质外延单晶金刚石及其相关电子器件的研究进展[J]. 人工晶体学报, 2023, 52(6): 931-944.

[12]

乔鹏飞, 刘康, 代兵, 刘本建, 张森, 张晓晖, 朱嘉琦. 终端金刚石能带结构与物理性能的研究进展[J]. 人工晶体学报, 2023, 52(6): 945-959.

[13]

简小刚, 张毅, 梁晓伟, 姚文山. 硫硒元素掺杂金刚石表面的生长位点研究[J]. 人工晶体学报, 2023, 52(6): 1120-1127.

[14]

彭博, 李奇, 张舒淼, 樊叔维, 王若铮, 王宏兴. 金刚石肖特基二极管的研究进展[J]. 人工晶体学报, 2023, 52(5): 732-745.

[15]

吴锐文, 宋华平, 杨军伟, 屈红霞, 赖晓芳. 基于聚氨酯垫的4H-SiC单晶衬底研磨性质研究[J]. 人工晶体学报, 2023, 52(5): 759-765.

编辑推荐

Metrics

阅读次数

全文

摘要

本文评价